Uncovering strong ?-metal interactions on Ag and Au nanosurfaces under ambient conditions via in-situ surface-enhanced Raman spectroscopy

نویسندگان

چکیده

•Surface-enhanced Raman spectroscopy reveals that aromatic hydrocarbons adsorb spontaneously to Au and Ag colloids•Density functional theory co-adsorb alongside capping ligands•The ?-metal interaction is prohibited by surface oxidation of the nanosurfaces•Recognizing on IB metals paves way for new nanotechnologies The interactions between aryl molecules are ubiquitous in nanotechnology have direct consequences formation applications metal nanomaterials. current consensus with nanomaterials negligible presence solvents ligands. As a result, work based under ambient conditions has hardly been pursued. Here, combining surface-enhanced density modeling, we show significant Ag/Au nanosurfaces do fact exist these conditions. Rationalizing this effect immediately led design plasmonic sensors greatly improved sensitivity. This expected broader significance areas across chemistry because it completely alters which understood. nanoparticles nanotechnology. Currently, well appreciated VIIIB but not metals. demonstrate probing molecular specificity using (SERS), strongly from solution onto surfaces nanoparticles, provided there no oxidation. Theoretical modeling shows adsorption driven dispersive ligands present initially nanosurface. Finding evidence long-neglected implications various applications. demonstrated SERS sensing an drug molecule whose structure would typically suggest be weakly adsorbing, indeed detected conventional colloids due oxidation, found particles. IntroductionStrong attractive recognized serves as foundation important industrial production fuels chemicals typical examples including hydrocracking biomass gasification Pt nanocatalysts.1Ghadami Yazdi M.G. Moud P.H. Marks K. Piskorz W. Öström H. Hansson T. Kotarba A. Engvall Göthelid M. Naphthalene Ni (111): experimental theoretical insights into adsorption, dehydrogenation, carbon passivation.J. Phys. Chem. C. 2017; 121: 22199-22207Crossref Scopus (13) Google Scholar,2Zhang F. Zeng Yappert R.D. Sun J. Lee Y.-H. LaPointe A.M. Peters B. Abu-Omar M.M. Scott S.L. Polyethylene upcycling long-chain alkylaromatics tandem hydrogenolysis/aromatization.Science. 2020; 370: 437-441Crossref PubMed (154) Scholar similar range In fact, where most take place.3Du Jing Preparation thiol modified [email protected] magnetic probe PAHs detection identification.J. 2011; 115: 17829-17835Crossref (151) Scholar, 4Zhou Z. Wang Xue Zou Y. Liu G. Tian Development shipboard automatic flow injection analysis-Surface-enhanced instrument toward onsite trace polycyclic water environment.Rev. Sci. Instrum. 2021; 92: 104102Crossref (1) 5Kasera S. Biedermann Baumberg J.J. Scherman O.A. Mahajan Quantitative sequestration small inside precise nanoconstructs.Nano Lett. 2012; 12: 5924-5928Crossref (131) 6Castro-Grijalba Montes-García V. Cordero-Ferradás M.J. Coronado E. Pérez-Juste Pastoriza-Santos I. SERS-based molecularly imprinted sensor highly sensitive PAH detection.ACS Sens. 5: 693-702Crossref (37) 7Du Xu grafted Fe3O4 effective substrates label-free 16 EPA priority hydrocarbons.Anal. Chim. Acta. 2016; 915: 81-89Crossref (44) 8He Chen Hou X. Q. Long AuNPs/COFs type substrate recognition polyaromatic hydrocarbons.Chem. Commun. (Camb). 53: 11044-11047Crossref 9Saito McGehee Norikane Size-controlled synthesis cyclodextrin-capped gold scattering.Nanoscale Adv. 3: 3272-3278Crossref Nonetheless, nanosurfaces, particularly Ag, remained topic fundamental research since their existence directly influence stability, charge-transfer property, configuration aromatic-metal nanosystems10Chilukuri Mazur U. Hipps K.W. Cooperativity coverage dependent desorption self-assembled monolayers: computational case study coronene (111) HOPG.Phys. 2019; 21: 10505-10513Crossref 11Hoft R.C. Ford McDonagh Cortie M.B. Adsorption amine compounds surface: study.J. 2007; 111: 13886-13891Crossref (117) 12Salomon Minissale Lairado F.R. Coussan Rousselot-Pailley P. Dulieu Angot Pyrene surface.J. 125: 11166-11174Crossref (5) 13Liu Maaß Willenbockel Bronner Schulze Soubatch Tautz F.S. Tegeder Tkatchenko prediction adsorption: binding benzene coinage metals.Phys. Rev. 2015; 036104Crossref (88) and, turn, allow properties functionalities created.Up now, extensive studies showing ideal or near-ideal circumstances crystal planes exposed, well-defined, placed high vacuum minimize barriers adsorption.10Chilukuri 14Jenkins S.J. Aromatic via first-principles theory.Proc. R. Soc. 2009; 465: 2949-2976Crossref (129) 15Frank K.H. Yannoulis Dudde Koch E.E. Unoccupied orbitals adsorbed (111).J. 1988; 89: 7569-7576Crossref (105) Clearly, if were also less constrained such those relevant phase catalysis environmental contamination. However, daunting task requires characterization technique sensitivity without placing any stringent demands sample. A potential address challenge advantage allows molecule-metal probed in-situ ultra-high specificity.16Dick Konrad M.P. W.W.Y. McCabe McCracken J.N. Rahman T.M.D. Stewart Bell S.E.J. Surface-enhanced nanostructured materials.Adv. Mater. 28: 5705-5711Crossref (36) With SERS, recently shown several molecules, lack metal-binding groups, adsorbing unexpectedly colloidal nanoparticles.17Ye Li Exploiting chemical differences dramatically “non-adsorbing” molecules.Analyst. 144: 448-453Crossref On basis observation, work, conducted measurements specifically tailored interfacial nanoparticle arrays, allowed us monitor wide at room temperature, atmospheric pressure, different solvents, ligands, free counterions. revealed contrary common belief, readily solution. Density (DFT) biphasic showed nature, strength all investigated, positively correlated number rings structure. nature means although they certainly non-negligible, layers block access surface. For example, was inhibited amount occurred minutes freshly prepared covalently bonded Au. Since parameters fully considered understood during previous aimed detecting hydrocarbon (PAH) conditions, general misconception had affinity Ag.18Enlow P.D. Buncick Warmack R.J. Vo-Dinh Detection nitro polynuclear spectrometry.Anal. 1986; 58: 1119-1123Crossref (94) 19Bello J.M. Stokes D.L. Silver-coated alumina medium surfaced-enhanced scattering analysis.Appl. Spectrosc. 1989; 43: 1325-1330Crossref (95) 20Alak fumed silica material scattering.Anal. 61: 656-660Crossref (59) 21Carron Peitersen L. Lewis Octadecylthiol-modified substrates: method compounds.Environ. Technol. 1992; 26: 1950-1954Crossref (86) 22Roth Hope G.A. Schweinsberg D.P. Kiefer Fredericks P.M. Simple measuring fourier transform spectra organic compounds.Appl. 1993; 47: 1794-1800Crossref (60) 23Stewart S.D. Fourier identification hydrocarbons.J. 1995; 629-635Crossref (23) 24Vasilyuk Maskevich Sveklo Zanevsky Gachko Strekal N. Modified silver films SERS-active substrata.J. Mol. Struct. 1997; 410–411: 223-227Crossref (11) 25Vo-Dinh Fetzer Campiglia A.D. Monitoring environment.Talanta. 1998; 943-969Crossref (96) 26Vasilyuk Podtynchenko Correlation structural, optical enhancing films.J. 2001; 565–566: 389-394Crossref (3) 27Carrasco E.A. Campos-Vallette Leyton Diaz Clavijo R.E. García-Ramos J.V. Inostroza Domingo Sanchez-Cortes Study pollutant metallic vibrational (SERS SEIR).J. 2003; 107: 9611-9619Crossref (48) 28Olson L.G. Uibel R.H. Harris C18-modified metal-colloid trace-level aqueous solution.Appl. 2004; 1394-1400Crossref (50) 29Leyton Garcia-Ramos Saitz Selective (PAHs) calix[4]arene-functionalized scattering.J. 108: 17484-17490Crossref (119) 30Mosier-Boss P.A. Lieberman S.H. composed chemically colloid particles immobilized microparticles.Anal. 2005; 77: 1031-1037Crossref (53) 31Leyton micro-Raman calix[4]arene-polycyclic host-guest complexes.Appl. 59: 1009-1015Crossref 32Costa J.C.S. Sant’ana A.C. Corio Temperini M.L. Chemical analysis spectroscopy.Talanta. 2006; 70: 1011-1016Crossref (73) ScholarOur findings play diverse role involving used particle growth, provide induce assembly, tailor chemistry.33Chen Kauffman D.R. Jin Tuning magic size atomically nanoclusters isomeric methylbenzenethiols.Nano 15: 3603-3609Crossref (123) 34Malola Nieminen Pihlajamäki Hämäläinen Kärkkäinen Häkkinen Method metal-ligand interfaces hybrid nanoparticles.Nat. 10: 3973Crossref (19) 35Caputo Pinna Nanoparticle self-assembly ?-? interactions.J. 2013; 1: 2370-2378Crossref 36Bidoggia Milocco Polizzi Canton Saccani Sanavio Krol Stellacci Pengo Pasquato Fluorinated charged hydrogenated alkanethiolates gold: expanding diversity mixed-monolayer biological applications.Bioconjugate 43-52Crossref (16) They studied probes, conductors, analytes, reactants applications.37Reddy Kudyshev Zhu Yan Vezzoli Higgins Gavini Boltasseva Reddy et al.Determining hot-carrier energy distributions single-molecule transport measurements.Science. 369: 423-426Crossref (54) 38Zhang Gu He Thackray B.D. Ye Ultrabright gap-enhanced tags high-speed bioimaging.Nat. 3905Crossref (99) 39Yin Zheng L.-Q. Fang Lai Porenta Goubert Zhang Su H.-S. Ren Richardson J.O. al.Nanometre-scale spectroscopic visualization catalytic sites hydrogenation reaction Pd/Au bimetallic catalyst.Nat. Catal. 834-842Crossref (47) 40Wang Zhao Yu Ozaki chiral-label-free strategy synchronous chiral discrimination molecules.Angew. Int. Ed. 132: 19241-19248Crossref Although occasional observations hinted otherwise, deep-rooted belief meant possibility acting dominant factor seriously considered.41Kumar Mandal Mathew S.P. Selvakannan P.R. Mandale A.B. Chaudhari R.V. Sastry Benzene- anthracene-mediated assembly liquid-liquid interface.Langmuir. 2002; 18: 6478-6483Crossref (104) 42Erol Han Stanley S.K. Stafford C.M. Du Sukhishvili taken granted oxygen.J. Am. 131: 7480-7481Crossref (144) 43Xu Cui Facile coffee ring effect.ACS Appl. Interfaces. 2014; 6: 6891-6897Crossref 44Gong Liao Cao Cassidy Sensitive coupled chloride ion sensor.Analyst. 6698-6705Crossref 45Su Jiang Breaking limit dual-phase-accessible hotspot ultrahigh nonadsorptive molecules.Anal. 6941-6948Crossref (22) 46Su Guo Cheng Quality alert edible oil liquid-interfacial spectroscopy.LWT Food 143: 111143Crossref (12) Filling gap possible can revolutionize our understanding established nanosystems will rational exploit interactions.Results discussionsIn-situ benzene, naphthalene, phenanthrene AuSERS emerged specific analytical technique, Au/Ag in-situ.16Dick crucial precondition utilizing construction nanostructures, possess strong properties.47Ding S.-Y. You E.-M. Z.-Q. Moskovits Electromagnetic theories spectroscopy.Chem. 46: 4042-4076Crossref process often involves modification surface,48Xu promoting nonmetallic monolayer films.Nano 16: 5255-5260Crossref (68) after changed, making them longer representative therefore unsuitable monitoring interaction. We previously promoted self-assemble two-dimensional resemble liquid-like (MeLLFs), water-oil sub-micromolar concentrations non-adsorbing organo-electrolytes, Figures 1A, S1, S2.48Xu Scholar,49Konrad Doherty A.P. Stable uniform signals arrays optically nanoparticles.Anal. 85: 6783-6789Crossref (80) Importantly, stable plasmonically active assemblies perturbating local environment nanoparticles. Moreover, MeLLFs interface, lets use even subtle changes both environments (see Figure S2 “experimental procedures” section details).Figure 1B, spectrum i obtained formed standard citrate-reduced stabilized particles, dominated bands 701 1,533 cm?1, bulk dichloromethane (DCM) citrate derivatives colloids, respectively. ii-iii, when naphthalene (NA) introduced MeLLF, clearly bands, prominently 1,378 characteristic NA.7Du Scholar,17Ye iii iv, NA unchanged MeLLF replaced ultrapure DCM, observed corresponded only contributed unabsorbed sitting physically within hot-spots. took place rapidly observation intensity close its final value first measurement (50 s accumulation time, see S3). very so overnight (Figure S4).Currently, widely accepted literature hydrocarbons, NA, Consequently, require functionalized hydrophobic modifiers, exhibit favorable intermolecular similarly hydrocarbons.21Carron Scholar,24Vasilyuk Scholar,28Olson Scholar,30Mosier-Boss Scholar,32Costa Scholar,50Gu H.-X. Hu D.-W. Y.-T. bare film system.Analyst. 141: 4359-4365Crossref Therefore, whether forces, contrast experiments either performed. 1B v, comparable, regardless taking DCM. metal. reinforced affected polarities hexane (vi) chloroform (vii), phase.NA special case, generated MeLLFs, 2A 2B . band positions notable shifts compared acquired same details), interacting nanosurface.51Liu G.-K. Wu D.-Y. Duan J.-F. Yao J.-L. R.-A. Effect intrinsic behavior molecules: group metals.J. 110: 17498-17506Crossref (28) addition frequency shifts, clear relative intensities observed, phenanthrene. out-of-plane vibrations 422SERS (not Raman), 492SERS (497Raman), 587SERS 898SERS (896Raman) cm?1 much more enhanced than in-plane 823SERS (831Raman) 1,031SERS (1,039Raman) cm?1.52Cyvin Neerland Brunvoll Cyvin B.N. Condensed aromatics. XII. Phenanthrene.Spectrosc. 1981; 14: 37-45Crossref (17) surface-selection rules dictate modes large tensor component normal surface, parallel field polarization, smaller components.53Le Ru E.C. Meyer S.A. Artur Etchegoin P.G. Grand Lang Maurel Experimental demonstration selection flat surfaces.Chem. 3903-3905Crossref (87) suggests flatly nanosurface.Figure 2An atomistic picture ligand-protected surfacesShow full caption(A B) (i) (ii) phenanthrene, respectively.(C) Schematic illustration model Cl? capped predicted DFT. Free species Cl?, Na+, unadsorbed system calculations, w

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biosensing Based on Surface-Enhanced Raman Spectroscopy by Using Metal Nanoparticles

Surface-enhanced Raman spectroscopy (SERS) is a promising tool in the analytical science because it provides good selectivity and sensitivity without the labeling process required by fluorescence detection. This technique consists of locating the target analyte on nanometer range of roughed Au-nanoparticles. The presence of the metal nanoparticles provides a tremendous enhancement to the result...

متن کامل

Unification of Surface Enhanced Raman Spectroscopy of Dyes Using One Pot Synthesized Stabilized Ag Nanoparticles

stabilized Ag Nanoparticles (NPs) were synthesized using Lee-Meisel method under three different conditions in an oil bath. UV-Vis spectroscopy of the Ag NPs showed a Localized Surface Plasmon (LSP) band around 430 nm, indicating Ag NPs had a size range around 40 nm. To fabricate a surface Enhanced Raman Spectroscopy (SERS) substrate, LSP properties of Ag NPs was employed with the goal of detec...

متن کامل

Femtosecond Laser Fabricated Ag@Au and Cu@Au Alloy Nanoparticles for Surface Enhanced Raman Spectroscopy Based Trace Explosives Detection

Herein we present results from our detailed studies on the fabrication of Ag@Au and Cu@Au alloy nanoparticles (NPs) using the femtosecond laser ablation in liquid technique. The NPs were obtained by ablating the pure Ag, Cu targets (bulk) in HAuCl4 (5mM) solution. The absorption properties of the obtained NPs colloids were characterized using UV-Visible absorption spectrometer and their size, s...

متن کامل

Au nanorod arrays tailored for surface-enhanced Raman spectroscopy.

We have demonstrated surface-enhanced Raman spectroscopy (SERS) on arrays of Au nanorods aligned in line by a dynamic oblique deposition technique. For light polarized along the major axes of the nanorods, the plasma resonance of the Au nanorods has been tuned to a wavelength suitable for Raman spectroscopy. Raman scattering on the discrete nanorods is significantly enhanced compared with that ...

متن کامل

Polytetrafluorethylene-Au as a substrate for surface-enhanced Raman spectroscopy

This study deals with preparation of substrates suitable for surface-enhanced Raman spectroscopy (SERS) applications by sputtering deposition of gold layer on the polytetrafluorethylene (PTFE) foil. Time of sputtering was investigated with respect to the surface properties. The ability of PTFE-Au substrates to enhance Raman signals was investigated by immobilization of biphenyl-4,4'-dithiol (BF...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chem

سال: 2022

ISSN: ['2451-9308', '2451-9294']

DOI: https://doi.org/10.1016/j.chempr.2022.06.008